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Analysis of elastic interactions between holes 

K. D A V A N A S  
Ministry of Defence, Tassopoulou 14, Agia Paraskevi, Athens 15342, Greece 

The elastic interactions between holes, i.e. pressurized, equilibrium and underpressurized 
bubbles or cavities, are analysed. By using rigorous mathematical methods, exact and easy-to- 
use formulae are derived for the description of the interactions. It is proven that, contrary to 
previous understanding, all elastic interactions between holes are repulsive. The magnitude of 
the repulsive force is found to increase for decreasing hole-to-hole separations. Thus bubble 
coalescence can be severely inhibited, which among other effects can lead to lower material 
swelling. Finally, the possible role of elastic repulsions in explaining the stability of the com- 
monly observed bubble lattices is discussed. 

1. Introduct ion  
Elastic interactions between holes are of great import- 
ance in connection with material swelling and bubble 
lattice formation. The strong interest in these phe- 
nomena, especially in the nuclear industry, is reflected 
in the extensive experimental and theoretical work 
[1-6] that has been done to date. However, the theor- 
etical models that have appeared in the literature use 
approximations rather than an exact description of 
the elastic field which determines the interactions. 
Consequently, agreement with experiments is not al- 
ways obvious. So, for instance, the apparent repulsion 
between small overpressurized and large equilibrium 
bubbles observed in the experiments by Barnes and 
Mazey [1] is not easily reconciled with model predic- 
tions which dictate that all bubbles, regardless of their 
pressure (or, in general, surface traction) attract each 
other. In addition, the stability of bubble lattices com- 
monly observed in irradiated metals [7 9] is difficult 
to explain under this assumption of universal attrac- 
tion among bubbles. 

In the present study, a mathematically rigorous and 
exact solution of the elasticity equations pertaining to 
interacting holes is provided; thus, the nature of the 
interaction (attractive or repulsive) as well as its mag- 
nitude, is determined unambiguously. Closed-form 
solutions are obtained for the interaction between two 
equi-sized and equi-pressurized holes; between one 
pressurized and one equilibrium hole of equal size; 
between a small pressurized and a targe equilibrium 
hole; and between two equi-sized holes with surface 
tractions equal in magnitude but opposite in sign (i.e. 
one pressurized and one with tensile traction on its 
surface). The last case pertains to cavities which exert a 
tensile stress on the surrounding matrix due to their 
surface tension. The results show that, contrary to 
previous beliefs, the elastic interaction between holes, 
regardless of their surface traction, is repulsive. 

2. General equations 
To find the elastic interaction between two holes in an 
infinite isotropic medium, the total elastic energy Eto t 

has to be known. Then, the elastic interaction force F~I 
will be given by 

~Etot  
Fel  - -  ~ L  (1) 

where L is the separation distance between the holes 
(i.e. tip-to-tip). 

The holes are modelled as two infinitely long cylin- 
ders; this does not alter the nature (attractive or re- 
pulsive) of the interaction nor does it make any signi- 
ficant difference quantitatively, since energies and 
stress concentrations calculated for spheres or cylin- 
ders differ only by small numerical factors, if at all. For 
example, the total elastic energy of an isolated pres- 
surized sphere and the elastic energy of an isolated 
pressurized cylinder are given by virtually identical 
expressions [10, 11]. In the classical elasticity prob- 
lems of a sphere or hole subjected to an applied stress 
at infinity, one finds again that the stress concentra- 
tions at the peripheries of the sphere or the hole differ 
only by a small (=  0.75) numerical factor [10-12]. The 
same is true when one compares the stress concentra- 
tions of two neighbouring spheres to those of two 
neighbouring cylinders [12, 13]. 

Bipolar co-ordinates are especially suitable for 
modelling a pair of inifinitely long holes in an infinite 
medium. The equations of transformation between 
cartesian (x, y, z) and bipolar (rt, ~, z') co-ordinates are 
[10, 11, 14] 

Jshq 
X --  

chq - cos 

J sin 
(2) 

Y - c h r l - c o s  

Z ~ Z ~ 

where J is the Jacobian of the transformation given 
by [10, 11, 14] 

a 
a - (3) 

chr 1 -- cos 

and a is a parameter dependent on the radii of the 
holes and the distance between them as follows. 
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Equation 2 defines an infinite number of circles in the 
(x, y) plane, given by the relations 

a 2 
(x - acoth) z + y2 _ 

s h  21] 

a2  (4) 
(y -- acot~) 2 + x 2 --  

sin 2 

Assume that the infinitely long cylinders occupy the 
circles ql  and q2 (see Fig. 1). When both holes have 
the same radius R~ = R 2 = R ,  then their positions are 
symmetrical 

with 

and 

- -  1"12 = r l l  = r io  > 0 (5)  

a = Rshr l l  - Rshq2  = Rshqo  (6) 

(C )2 
a 2 = + R - R 2 (7) 

To solve for the elastic field under any boundary 
conditions at rll, 1"12 (i.e. under any applied stresses at 
the surfaces of the holes), the appropriate Airy stress 
function @ has to be determined. This is given as a 
solution [10] of the well-known biharmonic equation 

V4~ = O (8) 

In bipolar co-ordinates, Equation 8 takes the form 
[14] 

[ ~  a ~ ~ a~ a~ ]@ 
~-~ + 2a~aen~- + ~ - a  + 2 ~  - 2 ~ , +  1 7 = 0  

(9) 

Once �9 is known, the stresses can be obtained from 
[14] 

a 2 a 
a~ n = (chrl - c o s g ) ~  - shrl aq- 

- s i n ~  + ch r l ]  ~- J (10) 

I ~2 a 
a ~  = (chrl - c o s t ) -  - shq - -  

~TI 2 a r  I 

- sin~ ~ + cos{ 7 (11) 

a~(e/J) 
a~n~ = - (chrl - c o s { ) - -  (12) 

ane~ 

where e represents strains. 
Hooke's Law takes the form 

cy~ = k(% + ~ )  + 2Ge~ (13) 

on~ = 2Gan~ 

where G is the shear modulus, )~ the Lame constant 
= vE/(1 + v) (1 - 2v), with E the Young's modulus, 

and v Poisson's ratio. 
The next step is to determine the displacements u (in 

the 1"1 direction) and v (in the ~ direction); these are 
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Figure 1 Representation of holes by the use of bipolar co-ordinates. 

given by [11] 

1 �9  a ( 1 / J )  
~;rl - -  V J an a~ 

1 av a(1/J) 
a~ -- J a ~  u ar I (14) 

a v a u  
en~ -- + 

an J a~ J 

Equations 9-14 can be combined to yield the displace- 
ments in terms of �9 dxplicitly [15]. 

G 1 aO 1 aA 
2Gu - (15) 

)~ + G J an J a~ 

G 1 a~ 1 aA 
2 Gv - -~ (16) 

L + G J a~ J ~rl 

where 

J - 2(~ + G) ~ 2  a~2 1 7 dn d~ (17) 

The total elastic energy of the system can be found 
from 

fs l fs - P'2u(n2)dS 1 -- P'lu(ql)dS + 2 UR Et~ = 2 UR 

(18) 

where P'i is the gas pressure in hole i (i = 1,2) and the 
integrals are taken over the surface of each hole. 

In order exactly to determine the interaction be- 
tween the two holes, one also needs to account for the 
effect of the surface energies of the holes. It has been 
shown [5] that this is done by substituting in Equa- 
tion 10 the uncompensated pressures Pi = P'~ - 27/R~ 
in place of the actual gas pressures in the holes, i.e 

lfs lfs - - P 2 u ( q 2 )  dS E t ~  u , - P l u ( q l ) d S  +2 UR 

(20) 
where y is the surface energy�9 

Finally, using Equation 20, the sign and magnitude 
of the interaction force between holes is obtained. 



Note that the above analysis pertains to plane strain 
elasticity problems. The holes can be pressurized, 
equilibrated, or even exert a tensile stress on the 
surroundings (if P'i = 0, then P / = - 2 7 / R  i < 0). In 
solving for the stress function q~, the state of the holes 
is incorporated by the use of appropriate boundary 
conditions. Specific cases are studied in the next 
section. 

3. Results 
As mentioned in the Introduction, the following four 
cases will be examined in detail: (I) two equi-sized and 
equi-pressurized holes; (II) two equi-sized holes, one 
pressurized and one equilibrium; (III) one small pres- 
surized and one large equilibrium hole; (IV) two equi- 
sized holes with surface tractions equal but of opposite 
sign. 

3.1. Case I: R1 = /72 ,  Pt = P2 
The two holes are at symmetrical positions q~ = qo = 
- q 2  (qo > 0), where q's are given by Equations 5-7 

as a function of the common radius R and the separa- 
tion distance L. The appropriate boundary conditions 
are 

cy n(rl = qt)  = - P1, cYn(q = 1"12) = - -  / 9 2 ,  

~nr = eyrie(q2) = 0 (21) 

where P = P~ = Pz and 

crn(oe ) = tTr = cynr ) = 0 (22) 

Thus, the biharmonic Equation 9 has to be solved 
along with the boundary conditions in Equations 21 
and 22. The appropriate stress function qb which ful- 
fills all the above requirements is 

O 
-- = K (chq - cost) In (chq - cos~) 
J 

+ ~ cosn~ [A.ch(n + t)q + B . c h ( n -  1)q] 
n = l  

(23) 

where K, A. and B. are constants. These constants can 
be derived from the work of Ling [14], where the 
problem of two holes under stress at infinity is solved. 
To satisfy the boundary condition of equal pressures 
at the hole surfaces, Equations 10-12 are solved 
simultaneously to yield 

2K ( e-"no shn qo + ne-noshqo)  
An ~ 

n(n + 1) (sh2n qo + nsh2 qo) 

2K(e-"no shn qo + neno sh rlo ) 
B. = (24) 

n(n - 1)(sh2nqo + nsh2rl0) 

except 

1 h B1 = ~ (Kt  rloch2Tlo--2aPo) (25) 

where Po is a parameter having the dimensions of 
pressure; for the present case I, Po = P. In case II 
though, Po is smaller than P, as will be seen later. 

Equation 22 of zero stresses at infinity requires 

- - ~ 0  for q ,E- - .0  (26) 
J 

Applying Equation 26 to Equation 23, one finds 

( A . + B . )  = 0 (27) 
n = l  

Substituting Equations 24 and 25 into Equation 27 
and solving for K 

ap  ~ + thrlo sh 2 qo - 

4 ~ e nnoshnqo + nshqo(nshqo + chqo)~ -~ 
.=2 n(n 2 -- 1)(sh2nr/o + nsh2qo) I 

(28) 

The next step is to calculate A of Equations 15-17 in 
order to find the displacements. Substituting the ex- 
pression for q~/J from Equation 23 into 17 and carry- 
ing out the integration yields 

A 2(X + G) 

J aP(X  + 2G) 

2(en + 1)  2 
= 2Eshq - 2sint + x 

e q 

sint(1 + en) 
arctan (en - 1) (1 + cos~) 

2(e 2q + 2en - 1) sin~ 
- arctan 

en I + cost 

eq - -  cos~  
+ 4(1 + cost)arctan sint 

+ ~ , ~ 1  A, sh(n + 1)qsinn~ 

+ B, sh(n - 1)q s i n n t J  (29) 

Knowing A and ~, the displacements can be found 
from Equations 15 and 16. So the displacement along 
the I"1 direction is obtained from 

u - 2( ,~+G) L ~ c h r l - c o s r  

1 I- sin  A a(A/J) 1 (3O) 
+ 2d L chq - cos~ J OE 

where O/J and A/J  are given by Equations 23 and 29. 
Taking the integral as indicated in Equation 20, the 

energy of the system is obtained. Due to symmetry, 
Equation 20 is equivalent to 

Eto ' = ~ - Pu(qo)dS (31) 
Js UR 

The integration is carried over the surface of the hole 
(i.e. a t q  = ql = qo); thus 

a dE 
dS = J dE - (32) 

ch rl o - cos 

Combining Equations 30-32 

- -  P G  f ~ 8 0  

2Get~ -- X+  G J_=~-q  node 

+ P[A(qo,  n) - A(qo, - n ) ]  (33) 
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From Equation 23 one finds 

f ~ d~ = + 8naA 1 chqoe 2naK % 

2naA, ch2qo 2rtaB, 
sh2 qo sh2 qo 

2ha 
+ S~On~=2 e -nq~  

x [(n + 1)A.sh(n + 1)q o 

+ (n - 1 ) B . s h ( n -  1)qo] 

2rca ~ 
e - ~no(nshqo 

sh2 qo n=2 

+ chqo)[A ,  ch(n + 1)qo 

+ B, ch(n - 1)qo] 

After some algebra the above equation becomes 

f ~ ~ no 
_ ~  d~ = 2 x a K + 8 n a A l c h q o e - %  

2naA1 ch2qo 2~zaB1 
sh21]o shZqo 

4rtaK 
--  sh 211o So 

where 
So 

(34) 

need to be studied in detail, because they will reveal 
the functional dependencies of Eto t. 

As seen from Equations 5-7, the limiting case 
qo ~ ~ (L/R ~> 1) corresponds to two separate (iso- 
lated) holes; under these circumstances the interaction 
is expected to be virtually zero, i.e. the total energy 
should be found equal to the energy of an isolated 
(pressurized) hole multiplied by 2. The limiting case 
qo ~ 0 (L/R -~ 0) will reveal what happens to the total 
energy as the two holes approach each other, an 
increase in Eto t as qo -'* 0 will mean repulsion, and a 
decrease will mean attraction. 

Let us first find the sum of the series in Equation 28 
for various limiting cases. Dividing both numerator 
and denominator by sh2nqo, one obtains 

~ e-~noshnq o + nshqo(nshqo + chqo ) 

n=2 n(n 2 -- 1)(sh2m/o + nsh2~o ) 

shnqo  n2 sh2 Qo nsh2 qo 
e - n q o  + + 

n=2 n(n 2 -  1) 1 + sh2nqo /  

For qo - ~ ,  thqo ~ i and 

nshqo neno/2 n 
shnqo enno/2 e(n - 1)no 

= ~ (n -  1)(e-.no shnqo + ne no shqo) [chnqo + n shqoe (n+  1)rio] __ ( n  4 -  1) (e -"no shnqo + ne'lo shqo ) [nshqoe-(" 1)no_ chnqo] 
n = 2 e "no n (n 2 -- 1) (sh2n q o + nsh2q o) 

(36) 

From Equation 29 one finds 
( 3 5 )  

k + 2G naZP 
A(qo, rt) - A(rlo , - 7t) = x 

( X + G )  1 + c h q o  

I (en~ e 2 n ~ 1 7 6  
2shq~ + eqo eqo 

Therefore, Equation 33 for the total energy becomes 

Et~ - 2(X+-G) 2naK + 4rtaKe -2no 

naK ch2qoe - no 2rta2 P + - -  
sh 2 1"1o ch qo . sh2 qo 

2naK ch 2qo 4rtaK -I 
sh2q ~ - sh2qo So J 

rcaKP ~ + 2G 
+ - -  (shqo + e - %) (37) 

1 + chqo G(2 + G) 

n 

1 + ( n -  1)no + � 8 9  1)2n2o + . . .  

Thus, the infinite series of Equation 38 approaches 
zero. Since qo ~> 1 for qo ~ ,  Equation 28 yields 

K-~  aPo 
sh2q ~ (39) 

On the other hand, for q o ~ O ,  s h q o ~ q o  and 
chq o ~ 1 and eno ~ 1. Under these circumstances 
Ling [14] has shown that 

10 aP o 
K -~  7 sh2qo (40) 

Let us now find the sum of the infinite series in 
Equation 35; dividing both numerator and denomin- 
ator by sh2nqo one obtains 

So= E (41) 
n=2  n(nZ _ l ) ( l + nsh2q~ ~ 

sh2nqo ] 

The above expression has all the information about 
the hole-to-hole interaction. However, it is not easy to 
use because it contains K and So which are given in 
terms of infinite series as seen from Equations 28 and 
35. The behaviour and the sums of these infinite series 

For  qo =+ ~ ,  the numerator approaches zero while the 
denominator remains finite, thus 

S o ~ 0 (42) 

On the other hand, for q o ~ 0 ,  s h q o ~ q o  and 
chqo ~ 1 and e qo --~ 1; thus 
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~ (n -  1)(e -"no shnqo + ne-no shqo ) [chnqo + nshqoe (,,+ 1)qo] _ (n  Jr- 1) (e-"noshnqo + neno shqo ) [nshqo e-( . l/no_ chnqo] 

n = 2 e "non(n 2 -- I) (sh2nqo + nsh2q0 ) 

e-nqo < ~ shnq~176176176 ~ e-"n~ chnqo(sh2nrlo+2nshqo)-shnqosh2nqo 
e"no(n 2 -  1) (sh2nq o + nsh2qo ) n 2 - ,=2 ,=z -1  sh2nqo + nsh2qo 

e-"no [- shnqo q oo e "no [ shnqo] 
=,~2 , T - i -  L chnn~ 1 + 2nsh~o/sh2nrl o J<-,;2 n 2-1- [ chnrl~ - T  J 

1 V1 3~,  q oo 1 3 
= 1 - +  e no/< ~, 2- 

,=2n-T~--l[4 4 J - , = 2 n - - I  4 

where the equal signs apply for qo equal to zero. 
Hence, for qo --+ 0 

3 
So ~ ~ (43) 

Now, one can use Equation 37 in connection with the 
sums of K and S o . Using X = 2G (i.e. v = 1/3, the 
standard value for Poisson's ratio), and taking 
the limit of Eto t from Equation 37 for rlo~OO 
(K --+ aPo/sh2qo, So ~ 0, thq  o ~ 1) one obtains after 
the algebra 

1r.p 2 R 2 
Eto t = 2 - 2Eo = E oo (44) 

2G 

where Eo is the energy of a single (pressurized) hole 
[10], and Eoo = 2Eo is the energy of the system of two 
holes at infinite separation. 

As seen from Equation 44 there is excellent agree- 
ment with reality, since the expression for the total 
energy yields, at large separations, the energy of one 
pressurized hole multiplied by 2. 

Taking the limit of Eto t for qo --* 0 
(K ~ lOaPo/7 sh2qo, S O --* 3/4, chqo ~ 1,, shqo --+ qo, 
eno --, 1) one finds 

lO 1 1 
8 Eo + + 2Eo~oo (45) Et~ -- 5 21 ~ 

Since the above formula is valid for qo--* 0, the last 
term dominates, thus 

5 ua 

8.0- 

1 
Etot = 2 E o ~  (46) 

q5 

For  very small values of qo 

a 
qo ~- shqo = -  = 

R 

Therefore, Equation 46 becomes 

R 
Eto t = 2E o 

[(R + L/2) 2 - R 2 ]  1 / 2  

R 

(47) 

(48) 

?.0- 

6.0. 

A simple superposition of Equations 44 and 48 de- 
scribes both the short range and the long range inter- 
action 

R R 
Etot = 2 E o + 2 E 0 ~  = E o o + E ~  (49) 

The result is plotted in Fig. 2. With the energy of the 
system increasing for approaching holes, the inter- 
action force is obviously repulsive. The derivative of 
Etot with respect to L yields the magnitude of the 
repulsive force Fel. 

5.0- 

4.0. 

3.0. 

2.0 

1 .0  

0 I . . . . . . . .  , . . . . . . . .  I 
10 -1 10 0 101 

L/R 

Figure 2 Ratio of the total energy Eto t of a system of two equi-sized 
and equi-pressurized holes over the energy Eoo of two isolated holes 
with the same pressure and radius R, as a function of separation L. 

It is interesting to compare Fea to other natural 
forces exerted on a bubble, as for instance, the retain- 
ing force of a grain boundary on a bubble Fgb, and the 
force of a dislocation on a bubble Fai S. The maximum 
values of these forces are given by [2] 

Fg b = ~RTg b (50) 

Fdi s = G b  2 (51) 

where 7gb is the grain boundary energy, and b is 
Burger's vector. For typical bubbles in copper, i.e. 
with R =  1gin, P =  1 MPa, 3 'gb=0.654Jm-2,  
E = 12.4 x 1010 Pa, and b = 2.56 x 10 -1~ m, one finds 

Fg b = 2 x 10 -6 Pa, Fdi s = 3 x 10 -9 Pa (52) 

The above forces pertain to spherical bubbles rather 
than infinitely long cylinders, as does Fel = 
--~Etot/~L. To derive the Fe~ for spheres (so that 

similar things can be compared), the ratio Etot/Eo ~ is 
taken as being the same for a pair of spheres or a pair 
of cylinders; this is not expected to alter the results to 

1 5 9 3  



any considerable degree, if at all, in view of what has 
been said in the previous section. From Equation 49 

Eto t R 
- 1 +  

Eoo L 

Therefore, in absolute terms 

d(Etot/E.) R 
dL L 2 

o r  

d E t o  t R 
dL - E~o L~ (53) 

For two spheres at infinite separation [10, 11] 

E~ = 2/~R3P2 (54) 
2G 

Combining Equations 53 and 54 

Eel = G 

The three forces F~l, Fg b and Fai ~ are compared in 
Fig. 3. Obviously, F~I far exceeds the other two in 
magnitude. 

3.2. Case I1: R~ = R2, P1 > P2 = 0 
The biharmonic Equation 9 has to be solved along 
with the following boundary conditions: 

~ = qo) = - P1, ~ - 1"1o ) = 0, 

o n ~ ( l l t  ) = cYq~(q2)  = 0 (56) 

10-5 

10-6- 

~ 10-7- 
,9 

I0-8- 

Fgb 

Fdis 

lo-9 
o 5'o 16o 1;0 200 
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Figure 3 C o m p a r i s o n  of forces exerted on a pressurized bubble  by a 
ne ighbour ing  similar bubble  F~l, by a grain b o u n d a r y  Fgu, and  by 
a dis locat ion Fa~, as a funct ion of separa t ion  L. P = 1 M P a ;  
R =  l g m .  

where P = P1, and 

(I) 
- - ~ 0  for q , t - - * 0  
J 

The last condition is equivalent to no stress at infinity. 
Note that - q 2  = ql  = qo > 0, i.e. the holes occupy 
symmetric positions as in case I. 

The appropriate stress function ~ fulfilling all the 
above requirements is 

q~ 

J 

aPqch2qo(chq - cos t )  aPcos t 

sh2r lo(ch2qo-  1) 4 

aP sh2q cos t aP chq + + - -  
2sh2qo(ch2qo - 1) 4 

+ K(chq - c o s t ) l n ( c h q  - cos t )  

+ ~, cosn~ [A.ch(n + 1)q 
n= l  

+ B.ch(n - 1)rl] (57) 

The constants K, A. and B. are given by the same 
Equations 24, 25 and 28 as in case I; the only differ- 
ence is that Po is now given by Po = P/2. Substituting 
the above expression for q) into Equation 17 and 
working out the algebra 

A 4(X + G) 
J aP(X + 2G) 

4ch2qo chq + 2ch2q cos t 
sh2qo(ch2qo-  1) 

2(en + 1) 2 
+ 2tshr  I - 2 sint + 

e q 

sint(1 + en) 
x arctan 

(en - 1)(1 + cosT) 

2(e2n + 2en - 1) sint 
a r c t a n - -  

en 1 + cost 

e q - -  COS 
+ 4(1 + cos t )  arctan 

sin 

4 
+ a P . ~ l  [A.sh(n + 1)q sinnt 

+ B.sh(n - 1)q sinn~] (58) 

From Equations 15, 16, 57 and 58 the displacements u, 
v and the total energy can be found. The latter is given 
by 

I 
G E t ~  - -  ~ + G J_n  ~T1 no 

d(  

+ P [A(q  o, n) 

- -  A ( q o ,  - n ) ]  ( 5 9 )  

Substituting for (I) and A in Equation 59 yields 

x a 2 p  2 

Etot 
2(X + G)sh2qo(ch2qo - 1) 

[ ch2q~176 1 I naPK(l+2e-2n~ 
ch2q~ + shrlo thqo 4(X + G) 

rcaZP 2(X + 2G) chrloch2qo 
+ 

2G(X + G) sh2qo(chq o + 1) (ch2q o - 1) 
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n a P K ( X  + 2G)shqo + e -  no lra2p 2 
+ 

4G(K + G) 1 + chqo - 4(k + G)sh2rlo 

x a K P  [ch2qoe-no ch2q o 4 S ] 

+ 8(X + G)shqok sh2q o + ~ + shqoo o 

(60) 

From this point on, the same procedure as in case I is 
followed. Thus, using X = 2G and taking the limit of 
Eto t for qo ~ o o  (K -~ aPo/shZqo,  S O --. O, thrl0 ~ 1) 
one finds 

Eto t = E 0 (61) 

in excellent agreement with reality. 
On the other hand, taking the limit of Eto t for 

r i o t 0  ( K - * l O a P o / 7 s h 2 q o ,  So- .3/4 ,  chqo--*l, 
shqo --* qo, eno ~ 1) one obtains after the algebra 

2 12 1 5 l 
Etot - ~Eo + 21Eo~o + ~ E o ~  (62) 

Using Equation 47 and retaining only the dominant 
factor of Equation 62, one ends up with 

5 R 1 R 
Eto t -- 12Eo~ ~ ~ E o ~  (63) 

Combining Equations 61 and 63, one arrives at the 
following expression which describes both long range 
and short range interaction 

1 R 
Eto t = E 0 + ~ E o L  (64) 

As found in case I, the total energy increases when the 
holes approach, which shows that the interaction is 
again repulsive. 

3,3. Case II1: R 2>> R l,  P l >  P 2 = 0  
This case resembles the situation of a cylinder near a 
free surface [16]. Due to the considerable size differ- 
ence, the curvature of the large hole can be taken as 
1/R 2 --* 0. The biharmonic Equation 9 has to be solved 
along with the following boundary conditions 

O ' r l ( q l  = i l 0 )  = - - P 1 ,  ~ q ( q 2  = 0) = 0, 

on~,(ql ) = one(q2) = 0 (65) 

where P = P1, and for no stress at infinity 

a# 
-- - ,  0 for q, ~ --* 0 (66) 
J 

The small hole occupies q~ = qo > 0, where 

a [ ( L  + R) 2 - -  R2]  1/2 
shq o - - (67) 

R R 

The large hole is the curve q = q2 = 0. The appropri- 
ate stress function is 

cb aP [ sh2qcos 
J - 2sh2qo LCOS~(1 -- ch2q) 4 thqo 

2q(chq - c o s t ) ]  
+ t ~ o  (68) 

Calculating A from Equations 68 and 17, one finds 

A 2 ( X + G )  _ aP [ch2qs in~  

J X + 2G sh2qo k thqo 

2~, chq ] 
- sh2q sin~ + t~ff~-qo j (69) 

Knowing @ and A, the displacements u, v can be found 
from Equations 15 and 16. Also, the total energy can 
be calculated from Equation 20 as follows: 

- PG ['~ ~ 
4GEt~ - X + G J _ ~ f l o d ~  

+ P [ A ( q  o, n) - A(qo, - re)] 

= - 2naZp2 [ s h 2 q o e -  no 
()~ + G)sh3qo L 

c h 2 q o -  1 ch2qoe no 

2shqo thqo 

chqo]  
- chqo + thqo J 

%aZPZ(X + 2G)chZqo 

+ (X + G)sh3qo(1 + chqo ) (70) 

Using X = 2G, and taking the limit rio --}~ (thqo ~ 1) 
one finds 

Eto t = E o (71) 

in perfect agreement with reality. 
Taking the limit qo--*0 (chqo--, 1, shqo--*qo, 

eno - ,  1) one obtains 

2 1 1 
Eto , = ~E o + ~ E  o -  (72) 

qo 

As seen from Equation 67, for L/R  ~ 0 

Thus, using only the dominant factor 

Eto t 3 x ~ E o  -~ ~- o L z j  (74) 

Superimposing Equations 71 and 74, the relation for 
both short-range and long-range interaction is ob- 
tained 

1 [-Rq 1/2 
.,o, = . o  + j (75) 

Once more, the interaction is proven repulsive. 

3.4. Case IV: R~ = R 2, - - 0 "  2 = P1 

In this case, the tractions on the surfaces of the two 
equi-sized holes are equal m magnitude but opposite 
in sign, i.e. one is tensile (Oz) and the other com- 
pressive (PI), with IPlP = I cYz[ = P. The compressive 
traction represents a pressurized bubble, of course; the 
tensile traction represents an underpressurized bub- 
ble, i.e. a bubble for which the entrapped gas pressure 
is smaller than the surface tension 

27 
P ~ - - -  < 0 (76) 

Rz 
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A cavity is represented by taking P~ = 0; then, due to 
the cavity's surface tension a tensile stress is exerted on 
the surrounding matrix. Thus, in the present case IV, 
the interaction between pressurized bubbles and cavi- 
ties (or, in general, underpressurized bubbles) is exam- 
ined. 

The biharmonic Equation 9 has to be solved along 
with 

~n(rit = rio) = - P  
(77) 

~n~(q0) = 0 

and 

cYn(ri2 = --rio) = + P  
(78) 

o n e ( -  rio) = 0 

With R 1 = R z = R, the two holes occupy symmetric 
positions as in case I, thus, rio is given by Equation 6. 
Also, for vanishing stresses at infinity 

O 
- - ~ 0  for ri, ~-- ,0  
J 

The appropriate stress function �9 solving the bihar- 
monic equation and satisfying the above boundary 
conditions is 

aP 
- [2rich2rio(chri - cos ~) 

J sh2rio(ch2ri o - 1) 

+ sh2ricos~] (79) 

Next, A is calculated from Equation 17; after the 
algebra 

A 2(k + G) 2aP 
J k + 2G sh2rio(ch2rio - 1) 

[2% ch2riochri + ch2ri sin %] (80) 

Thus, the displacements u and v can be calculated 
from Equations 15 and 16. The total energy will be 
given by the following relation: 

fs 1 fs Pu(riz)dS 1 - Pu(q l )dS  + ~ UR Et~ - -  2 UR 

(81) 

The above formula is similar to Equation 20 except for 
the plus sign indicating ~ tensile stress in the second 
term of the RHS. Inserting Equations 79 and 80 into 
Equation 81 yields 

4GEt~ -- X +  G J _ ~ r i  no 
d~ 

+ P[A(qo ,  rt) - A(rio - n)] 

PG [~ 80 dE 

- P [ A ( - r l  o , n ) - A ( - q o , - n ) ]  ( 8 2 )  

Carrying out the integration 

na2 p 2 

Eto t = 
(X + G)sh2rio(ch2rio - 1) 

I 2ch2qo e - no sh2rio ] 
2ch2qo + shqo sh2 rio j 
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Figure 4 Ratio of the total energy E,o t of a system of two holes over 
the energy E o of an isolated hole of radius R and pressure P as a 
function of separation L, when: (I) R t = R 2 = R and P1 = P2 = P; 
(II) R ~ = R  2 = R  and P 1 = P ,  P 2 = 0 ;  (IID R 2>>R I = R  and 
P I = P ,  P 2 = 0 ;  (IV) R I = R  2 = R  and P I =  P = - a 2 .  All four 
curves approach infinity for (L/R) -* O. 

/~aZp20~ + 2G) chrio 2 
4 ch2ri o 

X + G 1 + chqo sh2rio(ch2qo - 1) 

(83) 

With X = 2G, the limit of Etot for rl0 --' oo (thrio --, 1) is 

Etot = 2Eo (84) 

in agreement with reality. 

For rio --* 0 (chrio --* 1, shri o --* rio, eno --, 1) 

1 1 
Et~ - 3 E ~  (85) 

rio 

For very small values of qo, Equation 47 is valid; this 
gives 

E:_l 1 E 0  ( 8 6 )  Et~ - 3 

As previously, the overall interaction is obtained by 
superposition of the short and long range formulae 

Et"~ = 2 E ~  o (87) 

Again, a repulsive interaction is predicted. 
The results for all four cases are summarized in 

Fig. 4. From this figure, a general idea about how the 
various elastic interactions compare is also obtained. 

4. Discussion 
The results presented in the previous section prove 



unambiguously that the elastic interactions between 
bubbles and cavities are always repulsive. This is 
exactly the opposite of what has been accepted so far; 
all previous models [3-5] have invariably predicted 
attraction in all cases. 

The closed-form solutions provided for all four 
cases are obtained in rigorous mathematical fashion. 
Thus they are not based on  any assumptions other 
than being applicable within the limits of classical 
elasticity. The fact that cylinders rather than spheres 
are analysed does not constitute any significant distor- 
tion qualitatively or quantitatively. As already men- 
tioned in section 2, energies and stress concentrations 
differ only slightly (by less than a factor of 2) if at all 
when one compares cylinders to spheres. Thus, em- 
ploying this geometrical simplification, the problem of 
interaction can be treated in exact mathematical 
terms, contrary to previous attempts which had to rely 
on approximate descriptions of the elastic fields 
around the holes. This method (of studying cylinders 
rather than spheres) has been successfully employed in 
other scientific areas, as for example for the problem of 
diffusive interactions and growth of bubbles and cavi- 
ties. 

Using the Airy stress function appropriate for each 
case one obtains, apart from the energies, the stresses, 
strains and displacements at every point. So, for in- 
stance, the displacement along rl for case I is given by 
Equation 30. From Equations 30 and 16 one can see 
that the displacements at the hole surface (r I = qo) are 
not uniform but depend on ~, i.e. change from point to 
point. Thus the peripheries of the holes are distorted 
and do not remain circular. This is an important 
feature of the hole-to-hole interaction. It may also be 
one of the reasons the predictions of previous models 
differ from those of the present study. So, in the works 
of Eshelby [3] and Lidiard and Nelson [4], the strains 
are taken as uniform at the holes. This is also true for 
the work of Willis and Bullough [5], at least for the 
case of interacting bubbles of significantly different 
sizes. For equi-sized and equi-pressurized bubbles and 
for large separations, the Willis and Bullough calcu- 
lations coincide with the Eshelby result which, as 
mentioned, is derived on the basis of uniform hole 
deformations. However, it is apparent that the re- 
quirement of constant (normal) stress at the surfaces of 
interacting holes is not consistent with uniform strains 
and displacements at the peripheries of the holes. 

As seen from Fig. 3, for small separations the elastic 
interaction force Fel (for case 1) is much larger than 
two other natural forces, Fgb (force of a grain bound- 
ary on a bubble) and F,l~s (force of a dislocation on a 
bubble). Thus, a bubble dragged by a grain boundary 
or dislocation cannot coalesce with other bubbles. The 
same is true for the other cases II, III and IV; as seen 
from Equations 64, 75 and 87 the repulsive forces are 
proportional to L-2 or L-3/2. Thus there is always a 
critical distance beyond which the repulsive forces 
cannot be overcome. From the same Fig. 2, one can 
compare the elastic forces; obviously, for small separ- 
ations: Fel(I) > Fel(II) > Fe1(IV) > Fe~(III). 

In all four cases, at least one of the interacting holes 
was a pressurized bubble. However, if one examines 

cavities or, in general, underpressurized bubbles in 
place of overpressurized ones, the results are identical. 
This happens because in elasticity the energies depend 
on the square of the stresses. So, for example, if at the 
surface of an isolated cavity one applies normal stress 

- P or + P the elastic energy will be identical. Sim- 
ilarly, the interaction between two equal cavities 
(underpressurized bubbles) is identical to case I; the 
interaction between a cavity (underpressurized bub- 
ble) and an equilibrium bubble of equal size is identi- 
cal to case II; and the interaction between a cavity 
(underpressurized bubble) and an equilibrium bubble 
of much larger size is identical to case III. Hence, 
regardless of whether one talks about bubbles or 
cavities or underpressurized bubbles, the interactions 
are always repulsive. Preliminary numerical results (to 
appear in a future paper) using finite elements, are in 
agreement with this conclusion. 

The presence of elastic repulsions constitutes a bar- 
rier to coalescence. Barnes and Mazey [1] reported 
experimental data where coalescence was apparently 
prevented by the existence of a barrier. They observed 
that small pressurized bubbles rotated like satellites 
around large equilibrium ones rather than coalescing 
with them. 

What has been discussed so far is not meant to 
prove coalescence impossible. Note that repulsions 
develop only when at least one of the holes is either 
overpressurized or underpressurized. Interactions 
among equilibrium holes are non-existent. When elas- 
tic fields are' absent, bubbles do not 'feel' the presence 
of other bubbles. The same thing happens in some 
cases where elastic fields are relaxed by atom diffusion, 
especially at high temperatures. In these cases the 
bubbles, although initially pressurized, become equi- 
librated by the acquisition of vacancies. Then there 
is no barrier to coalescence which occurs readily 
should the bubbles collide while moving either ran- 
domly or due to some driving force (e.g. thermal 
gradient). 

However should any elastic fields exist, coalescence 
may be seriously inhibited. This can significantly re- 
strain material swelling because, when bubbles coal- 
esce, the volume of the new bubble is larger than the 
sum of the volumes of the component bubbles. Con- 
versely, an increase in swelling is expected when elastic 
repulsions are relaxed. This may be one of the reasons 
Rest et  al. [6] observed a significant increase in 
swelling rates as well as in bubble mobility and coales- 
cence when the test material experienced a crysta'lline- 
to-amorphous transformation. 

Extensive experimental work has been devoted to 
the phenomenon of bubble lattices [7-9, 17, 18]. 
Measurements show that the amount of gas entrapped 
in these ordered configurations is such that the indi- 
vidual bubbles are highly overpressurized [7] by up to 
a factor of 20, i.e. with internal pressure 20 times the 
equilibrium value. Thus, the forces between the bub- 
bles may acquire high values since they are propor- 
tional to p2. Elaborate models have been proposed [7, 
17, 18], trying to reconcile the generally accepted idea 
of attraction between bubbles with the reality of the 
lattices. To explain the stability of these lattices, a 
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repulsive force is needed. Such can be provided by the 
elastic interactions studied here. 

5. Summary and conclusions 
In the preceeding sections, a complete analysis of the 
elastic interactions among pressurized, equilibrium 
and underpressurized bubbles has been presented. Us- 
ing rigorous mathematical methods, the interactions 
have been described in terms of exact and easy-to-use 
formulae. It has been proven that, contrary to what 
has been accepted so far, all elastic interactions be- 
tween holes are repulsive. 

The repulsive force has been found to increase in 
magnitude when the holes approach. Quantitative 
comparisons with experiments are hindered by the 
unavailability of detailed measurements of the 
strength of the interactions; this is unfortunate, in view 
of the simplicity of the derived formulae which permit 
almost any combination of pressures, separations and 
bubble radii to be treated readily. However, experi- 
mental observations where coalescence is inhibited by 
a barrier are in agreement with the predicted repul- 
sions. Furthermore, such repulsive interactions may 
constitute the 'missing link' for the explanation of the 
commonly observed bubble lattices. 

Finally the elastic repulsions, with their role as 
coalescence inhibitors, may considerably decrease the 
swelling of materials. 
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